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Two methods which can be used to show that, on a Banach space X, every
bounded linear operator has a best compact approximation, namely the basic
inequality method and the method of M-ideals, are shown to be basically
equivalent. Thus, the paper responds to a question posed by S. Axler, I. D. Berg,
N. 1ewell, and A. Shields (1979, Ann. of Math. 109, 601-612; 1980, Trans. Amer.
Math. Soc. 261, 159-167). .. 1994 Academic Press. Inc.

I. INTRODUCTION

The present note is devoted to the investigation of the relation between
M-ideals of compact operators and Banach spaces satisfying the so-called
"basic inequality," introduced by Axler, Berg, Jewell, and Shields [3,4].
For a Banach space X to satisfy the basic inequality the following is
required:

For all S E L(X), for all bounded nets (A",) c L(X) such
that A", - 0 and A: - 0 strongly and for all c > 0 there is
some index CXo such that

IIS+ A ",all ~ maxI IISII, IISlle + IIA"'oll} + c. (1)

(Here L(X) denotes the space of all bounded linear operators, K(X) the
space of all compact operators, and II SII ethe essential norm of S, i.e., the
norm of the equivalence class S + K(X) in the quotient space L(X)/K(X).)

Axler, Berg, Jewell, and Shields introduced the basic inequality in order
to show that on certain Banach spaces all bounded operators have best
compact approximations. Their main result states:
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THEOREM 1.1. If X satL~ries the basic inequality and X* enjoys the
hounded approximation property, then K(X) is proximinal in L(X).

They go on to show that I P satisfies the basic inequality for 1 < p < 00 as
does co, whereas II, IX, and the LP-spaces (for p=f-2) fail the basic
inequality. Therefore, K(l P) is proximinal in L(fP) for I < P <x, a result
which can also be derived from the fact that K(l P) is an M-ideal in L(l P)
for these p (see, for instance, [26]). Apart from the papers quoted in [3],
the problem of best compact approximation is considered, e.g., in [2, 5, 9,
10, 13, 14, 17, 18,32,33,37].

Recall that a closed subspace I of a Banach space X is called an M-ideal
if there is a linear projection P from X* onto I ~, the annihilator of J in
X*, satisfying

Ilx*11 = IIPx*11 + Ilx*-Px*11 Vx* E X*.

This notion is due to Alfsen and Effros [I] and is studied in detail in [6]
and our monograph [21]. A result from M-ideal theory of particular
interest in the present context states that M-ideals are proximinal (see [1,
Cor. 1.5.6; 6, Prop. 6.5; 21, Prop. [1.1.1], and see also below). [n due course
we shall need the following characterisation of M-ideals in terms of the
so-called three-ball property: J is an M-ideal in X if and only if for all
xEBr (the closed unit ball of X), YI, .h, .hEBJ, and 1:>0 there is some
yEI such that Ily,+x-yll ~ I +1: (i= 1, 2, 3). For a proof we refer to [25,
Th. 6.17] or [21, Th. 1.2.2].

Moreover, the authors of [3] obtain the proximinality of HX + C(lf)
in LX(lf) by basic inequality techniques; and Luecking [29] gives a
proof of the same result using M-ideal methods, viz. by showing that
(H X + C(lf))jHX is an M-ideal in LX (If)jHc.c. Also, Davidson and Power
obtain theorems on best approximation both by M-ideal methods and by
basic inequality techniques [12].

These similarities suggest that there might be a close relation between the
two methods. The purpose of this paper is to point this out. More
precisely, we show that a revised version of the basic inequality is in fact
equivalent to K(X) being an M-ideal in L(X). But we also note that the
basic inequality as it stands and the M-ideal property are unrelated.

2. A CHARACTERISATION OF M-[DEALS BY A REVISED BASIC INEQUALITY

Before giving this characterisation, we first show that the basic inequality
(1) does not imply that K(X) is an M-ideal in L(X), and that the converse
does not hold, either.



M-IDEALS AND THE BASIC INEQUALITY 23

EXAMPLE 2.1. Every subspace X of Co satisfies the basic inequality.

Proof Let S, A~, and e> 0 be as in the definition of the basic
inequality, and let (Pn) denote the sequence of coordinate projections on
Co' For a compact operator K on X we have

II(Id-PnlSII ~ II(Id-Pn)(S-K)11 + II(Id-Pn)KII

~ IIS-KII + II(Id-Pn)KII

so that for some m

since PlI -> ld uniformly on the relatively compact subset K( B.\) of Co'
Fixing this m we obtain from the strong convergence of (A n

for some~o. Altogether this yields

IIS+A~oll =max{IIPm(S+A~o)ll, II(Id-Pm)(S+A~)II}

~max{IISII +£, IISlle+£+ IIA~oll}· I

In fact, a faithful rewording of the proof of Theorem 2 in [3] yields that
every subspace of 1P (I < P < ex;) and more generally every subspace of an
(Mp)-space (in the sense of [30]) satisfies the basic inequality.

To obtain the desired counterexample it remains to quote, e.g., from [28,
p. III] that there are subspaces X of Co without the metric compact
approximation property. In particular, such a space X satisfies the basic
inequality without K(X) being an M-ideal in L(X), since the latter
property is known to imply the metric compact approximation property
[20]. Still, one can show for subspaces X of IP or Co that K(X) is an
M-ideal in some subspace of L(X).

Next we give an example to show that the converse implication does not
hold either.

EXAMPLE 2.2. There is a Banach space X failing the basic inequality such
that K(X) is an M-ideal in L(X).

Proof Consider a rel1exive Oriicz sequence space h M which contains
isomorphic copies of 1P for two different values of p. To be more specific,
let M(t) = t3 + sin(log lIog til. Then h M is rel1exive and contains copies of 12 and
1P for some p < 2, which is fixed in the following. Note that 12 embeds into
(h M )* as well; for these matters see [27, 4.b.3, 4.c.2]. N. Kalton [24] (see
also [23]) has shown that there is an equivalent norm on h M such that the
renormed Orlicz space, X, has the following properties:
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• K(X) is an M-ideal in L(X).

• For every b > 0, X contains a subspace F,j whose Banach-Mazur
distance to IP is d(F6 , fP) < I + b.

• For every b >0, X* contains a subspace H,j with d(H6 , 12
) < 1+(5.

Consequently X admits of a quotient E,j such that d(E,j, 12
) < I + b.

Now, the basic inequality can be formulated verbatim for operators acting
between two different Banach spaces. This point of view is adopted in
[17,18]. It is noted there that the basic inequality holds for operators from
quotients of X to subspaces of X once it holds for operators from X to X.
Therefore, should the basic inequality hold for the above space X, it would
hold for operators from E,j to F,j. Letting b tend to °we deduce that the
basic inequality holds for operators from 12 to IP, which is not the case as
is calculated in [18] (recall p < 2). I

Despite these examples we show that the basic inequality method of [3]
and the M-ideal method for obtaining best compact approximations are
basically equivalent. To achieve this we propose to revise the basic
inequality in such a way that the existence assumption which is inherent in
Theorem 1.1 under the form of the approximation property becomes part
of a "revised basic inequality." (The problem with the original basic
inequality is the "V(A J" quantifier, which is too much to be expected.)
First, we present a general proposition along these lines. Note that under
the assumption of Proposition 2.3, ran( 7r) is canonically isometric to J. so
that it makes sense to consider the a(X, J* )-topology.

PROPOSITION 2.3. Let J he a suhspace of a Banach space X such that
J -'- is the kernel of a contractive linear projection 7r. Then the following
assertions are equivalent:

(i) I is an M-ideal in X.

(ii) For all XEX there is a net (y,) in J such that y,~x in the
a(X, J* )-topology and

lim sup liz + (x - y,)11 ~ max{ Ilzll, liz + III + Ilxll} Vz E X.

(iii) For all x E Bx there is a net (y,) in I such that y, ~ x in the
a(X, 1* )-topology and

lim sup Ily + (x- y,)11 ~ I

The proof of Proposition 2.3 depends on the following version of the
principle of local reflexivity.
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LEMMA 2.4. Let X be a Banach space and J c X a closed subspace.
Suppose that E c X* * and Fe X* are finite dimensional subspaces and that
/; > 0 is given. Then there is a linear operator T: E ~ X such that

• (Tx**, x*) = (x**, x*) \lx** E E, x* E F,

• (1 -/;) IIx**1I ~ II Tx**11 ~ (l +/;) IIx**11 \lx** EE,

• TIEnx=Id,
• T(EnJu)cJ.

Proof This is a special case of [7, Th. 3.2], but the lemma also follows
from [8] since J and En X are easily seen to form a "friendly collection"
in the terminology of that paper. I

Proof of Proposition 2.3. (i) => (ii): Let Q denote the M-projection from
X** onto J.L.L. Then

liz + x - Qxll = IIQz + (ld - Q)(z - Qz + x)11

=max{llzll,llz-Qz+xll}

~ max{ Ilzll, liz + JII + Ilxll} =: ji,

since ker Q ~ X* */J U and II z + J u" = II z + J II for z E X.
Now consider the set A of all triples rt.=(E,F,/;), where EcX** and

Fe X* are finite dimensional subspaces and /; > O. Then A is directed in a
natural way. We denote by T~ a local reflexivity operator with the proper­
ties spelt out in Lemma 2.4 and define y~ = T~(Qx). (Note that y~ is
eventually defined.) Then y~ ~ x in the desired fashion. To see this observe
that the copy of J* we are considering coincides with the preannihilator of
ker Q, and hence we obtain for finite dimensional subspaces Fe J*, y* E F,
and sufficiently large rt.

(y~, y*) = (T~(Qx), y*) = (Qx, y*) = (x, y*).

Finally, we obtain (again, the term involving T~ is eventually defined)

which yields the desired conclusion.

(ii)=> (iii): This is obvious.

(iii) => (i): This follows from [35, Cor. 1.2]. I
Note that the net gained in the preceding proposition is necessarily

bounded, since the choice z = 0 yields lim sup Ily~ - xii ~ IIxll.
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3. ApPLICATIONS

We now discuss special instances where Proposition 2.3 applies. In the
case where X = J* * this proposition is somewhat stronger than [19,
Prop. 4.3]. Consider now the subspace K(X) of L(X). It is known that
K(X)-L is the kernel of a contractive projection if X has the metric compact
approximation property [22].

THEOREM 3.1. For a Banach space X, the following assertions are
equivalent:

(i) K(X) is an M-ideal in L(X).

(ii) For all TE L(X) there is a net (K~) in K(X) such that K~* --+ T*
strongly and

lim sup IIS+ T - K~II ~ max{ IISII, IISlle + II Til} VSEL(X). (2)

(iii) For all TE L(X) there is a net (Kx) in K(X) such that K x* --+ T*
strongly and

lim sup liS + T - Kxll ~ max {IISII, II Til} VSE K(X).

Proof (i)=>(ii): Since the functionals UH <u**x**, x*> belong to the
copy of K(X)* in L(X)*, there is, by Proposition 2.3, a net (Lx) in K(X)
such that L: --+ T* in the weak operator topology satisfying (2). Now (2)
will not be spoiled by taking convex combinations of the Lx' Hence, there
are KxEco{L'fIP~cx} with K: --+ T* strongly fulfilling inequality (2).

(ii) => (iii): This is obvious, again.

(iii) => (i): Clearly, condition (iii) implies the three-ball property so
that K(X) is an M-ideal in L(X). I
It is worthwhile mentioning that Theorem 3.1 extends verbatim to
operators acting between distinct Banach spaces.

An application of (2) with S=O shows that lim sup IIT-Kxll ~ IITII.
Therefore there is some reason to call condition (ii) a "revised basic
inequality" for X. As a matter of fact, apart from a superficial resemblence
of (ii) with the basic inequality, (2) constitutes the core of the proof of
Theorem I.I, as an inspection of the argument in [3] shows; all the results
of that paper can be obtained on the basis of the revised basic inequality.
This observation enables us to provide an approximation theoretic result
for M-ideals of compact operators which is more precise than their mere
proximinality.

COROLLARY 3.2. Suppose K(X) is an M-ideal in L(X). Let TE L(X) and
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let (T')>e A C K(X) be a bounded net such that T: -+ T* strongly. Then
there exists some K E co{ T, I~ E A} such that liT - KII = II Til e'

Proof If (K,) denotes a net devised by Theorem 3.1 (ii), then
T,* - K: -+ 0 in the weak operator topology and hence T, - K, -+ 0 in the
weak topology u(K(X), K(X)*) (cf. [34]). Therefore, Ilt,-K,II-+O for
some t, E co{ Tp IP~ ~}, K, E co{ K p IP~ ~}. Since (K,) still satisfies (2), so
does (t,), and by the argument leading to Theorem I in [3], T has a best
compact approximant K E co{ t, I~ E A} = co{ T, I~ E A}. I

A similar result holds for best approximations by elements of
general M-ideals: If J is an M-ideal in X and x E X, and if (y,) is a net
in J converging to x in the u(X, J* )-topology, then there exists some
YEco{y,IIXEA} such that IIx- yll = IIx+JII. This can be seen as above.

In the next result, which is a corollary to .one of the main theorems in
[36J, we give a more precise version of condition (ii) of Theorem 3.1.

PROPOSITION 3.3. For a Banach space X, the following assertions are
equivalent:

(i) K(X) is an M-ideal in L(X).

(ii) There exists a net (K,) in K(X) such that K,* -+ Id p strongly and

lim sup 11K,S + (Id - K~) Til ~ max{ IISII, II Til} 'tiS, TE L(X).

(iii) There exists a net (K,) in K(X) such that K: -+ Id p strong(v and

lim sup liS + (Id - K~) Til ~ max{ IISII, IISlle + II TIl} "IS, TEL(X).

(iv) There exists a net (K,) in K(X) such that K,* -+ Id p strongly and

lim sup liS + (Id - K~) Til ~ max{ IISII, II TIl} 'tISE K(X), TE L(X).

Proof (i)=(ii): This is proved in [36, Theorem 5.2].

(ii) = (iii): Bya convex combinations argument we may suppose that
K, .....+Id strongly, too. For e > 0 fix IX such that II(Id - K,)SII ~ IISlle + e.
This is possible by the same argument as that in Example 2.1. Then fix Po
such that IIKpK,-K,II~e, hence II(ld-Kp)(ld-K,)-(Id-Kp)11 ~e for
13 ~ 130' Consequently

liS + (Id - K p) Til = IIKpS + (Id - Kp)(S + Tlil

~ IIKpS+(Id-Kfl)((ld-K,)S+ Tlil +e IISII

~ max{ IISII, II(Id - K~)S+ Til} + e + e IISII

~ max {IISII, IISile + II TIl} + e( IISII + 2)

for large enough P, which yields our claim.
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(iii)=>(iv): Obvious.

(iv)=>(i): This is known from [36J or [24J and follows from
Theorem 3.1 as well. I

The coordinate projections on fP do not satisfy the inequality in (ii), as
was pointed out in [36]. However, the do work in (iii), since fP satisfies
the original basic inequality, and hence in (iv), too; the latter follows also
from the proof of [24, Th. 2.4].

Our final aim is to apply the ideas of the present section to nest algebras.
Let H denote "a" separable complex infinite dimensional Hilbert space. For
convenience we put .% = K(H), fP = L(H). A nest .. j' is a strongly closed
totally ordered set of projections on H containing 0 and Id. The corre­
sponding nest algehra .<;1 = ,<;1(.1') consists of all those operators on H that
leave rant P) invariant for each P E .V. All the results on nest algebras used
below can be found in the survey articles [II, 31 ].

Feeman [15J discusses a property ,1, reminiscent of the basic inequality,
that a subspace of L(H) might or might not have. (We omit the definition.)
He shows for a nest algebra .w with property .d that .w + .X" (which is
closed) is proximinal in L(H). However, he is able to check ,1 only for the
nest consisting of the coordinate projections with respect to some fixed
orthonormal basis of H. In [16 J he obtains proximinality of s1 + X for
every nest algebra .w in that he proves that (d + .% )/.<;1 is an M-ideal in
!/J/.w, Another proof of this fact is contained in [12]. Since !f'/,<;1 happens
to be the bidual of (.<;1 + ,%')/.<;1 ~ .%"/(.<;1!l f), this result also follows
from the stability of the class of M-embedded spaces with respect to
quotients [20].

It is asked in [15J which nest algebras have property ,1. The following
proposition states that all nest algebras enjoy a "revised property ,1." We
remark in passing that an analogous result can be proved for the sub­
algebra .w of L(l") consisting of those operators which have an upper
triangular matrix representation with respect to the canonical basis of I",
for I < p < 00. This answers another question posed in [15].

PROPOSITION 3.4. Let.r:! be a nest algebra. Then for every T E L(H)
there is a sequence (Til) in ,<;1 + .~' such that Til -> T strongly and (d( " ,<;1)
denoting distance to.w)

lim sup d(S + T - Til' .<;1)

~ max{ d(S, ,w), d(S, ,w +.x) + d(T, ,<;1)} 'riSE L(H).

Proal If we let X=Y/,<;1 and J=(.<;1+.x)/.<;1, then the desired
inequality, in a version for nets, reads

lim sup IIS+ T- TJx~max{IISllx,IISllx/}+ IITllx} 'riSE L(H),
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where IISII x denotes the norm of the equivalence class of S in X, etc. Since
J is an M-ideal in X by the above discussion this is fulfilled for some
bounded net of equivalence classes ([Ta ]) in J tending to [T] in the
er(X, J* )-sense, by Proposition 2.3.

It remains to investigate the convergence of this net, which is just
the weak * convergence in X;;E J**. If (Ta ) is a bounded net of compact
representatives of the [Ta ] E (d + f)j.r.I;;E fiCr.I n f) and R is a
er(L(H), K(H)*)-limit point, then R - TE (d n f)Ll = d. Thus, upon
replacing (To) by an appropriate subnet of (To - R) we may assume that
To -+ T in the weak operator topology. Therefore we may even assume that
To -+ T strongly by a convex combinations argument. (The point here is
that a linear functional on L(H) is continuous for the strong operator
topology if and only if it is continuous for the weak operator topology
so that a convex subset of L(H) is strongly closed if and only if it is
weak operator closed.) Since the strong operator topology is metrizable on
bounded sets, we may pick a subsequence of (To), say (Tn)' with all the
desired properties. This completes the proof of Proposition 3.4. I
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